Minimally Primitive Graphs with a Non-cut Arc

Anton Sohn Michael McGloin

August 10, 2021

Primitive Matrices

Definition

A non-negative square matrix A is primitive if there is some positive integer k for which A^{k} is positive. The least such k is called the exponent of A.

Definition

Let A be a non-negative matrix. The graph of A is the directed graph $\Gamma(A)$ on vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, in which $v_{i} \rightarrow v_{j}$ is an arc if and only if $a_{i j}>0$.

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Figure: A non-negative square matrix

Figure: The graph of this matrix

Primitive Graphs

Lemma

Let A be a non-negative matrix with graph Γ. Let k be a positive integer. Then the (i, j)-entry of A^{k} is positive if and only if there is a walk of length k from v_{i} to v_{j} in Γ.

Corollary

A is primitive if and only if there exists a positive integer k with the property that whenever u and v are vertices of $\Gamma(A)$, there is a directed walk of a length k from u to v in $\Gamma(A)$. The least k for which this happens is the exponent of A.

Definition

A directed graph Γ is primitive if there is some positive integer k with the property that whenever u and v are vertices of Γ (not necessarily distinct) there is a walk of length k from u to v in Γ. The least k with this property is called the exponent of Γ.

Strongly Connected Graphs

Definition

A graph Γ is strongly connected if whenever u and v are vertices in Γ, there is a directed walk in Γ from u to v.

Figure: This graph is NOT strongly connected

Definition

A directed graph Γ is minimally strongly connected if Γ is strongly connected and $\Gamma \backslash e$ is not strongly connected for all $e \in E(\Gamma)$.

Minimally Primitive Graphs

Definition
A directed graph Γ is minimally primitive if Γ is primitive and $\Gamma \backslash e$ is not primitive for all $e \in E(\Gamma)$.

REMARK: A primitive graph that is minimally strongly connected, is also minimally primitive.

Definition

A non-cut arc is an arc in a strongly connected graph whose deletion leaves the graph strongly connected.

Figure: A minimally primitive graph with a non-cut arc

Minimally Primitive Graphs of exponent 5

Lemma

If Γ is a minimally primitive directed graph then $\exp (\Gamma)>4$.
Theorem
For $n \geq 3$ let G_{n} denote the digraph on vertex set $\left\{u, v, x_{3}, \ldots, x_{n}\right\}$ with arcs $u \rightarrow v, v \rightarrow u, u \rightarrow x_{i}$ and $x_{i} \rightarrow v$, for $3 \leq i \leq n$. Then G_{n} is minimally primitive of exponent 5 . Moreover if $n \geq 3$ and G is a directed graph of order n that is minimally primitive of exponent 5 , then $G \cong G_{n}$.

Bounds on the number of Arcs

Lemma
Let G be a minimally primitive graph with a non-cut arc and $m(G)$ denote the number of arcs. Then :

$$
n+1 \leq m(G) \leq 2 n-2
$$

Figure: Exponent $=$ $a b-2 a+b$

Figure: Exponent $=5$

Minimally Primitive Graphs of Exponent 6 with non-cut arc

Lemma

Let G be a minimally primitive graph with non-cut arc e. If P is a nonempty set of primes then one of the following must hold

1. e is in every circuit whose length is not divisible by any $p \in P$ OR
2. e is in every circuit whose length is not divisible by any $q \notin P$

Lemma

Let G be a minimally primitive graph with exponent 6 and non-cut arc $u \rightarrow v$. Then $u \rightarrow v$ is in every circuit whose length is not divisible by 2 or 3 .

Minimally Primitive Graphs of Exponent 6 with non-cut arc

Lemma

There exists a minimally primitive graphs of exponent 6 with a non-cut arc on $n \geq 5$ vertices.

Examples of exponent 6 minimally primitive graphs with a non-cut arc

Attempts to classify Exponent 6 graphs with a non-cut arc

Shortest Path

